Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis
نویسندگان
چکیده
Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance.
منابع مشابه
Receptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملContextual-Guided Bag-of-Visual-Words Model for Multi-class Object Categorization
Bag-of-words model (BOW) is inspired by the text classification problem, where a document is represented by an unsorted set of contained words. Analogously, in the object categorization problem, an image is represented by an unsorted set of discrete visual words (BOVW). In these models, relations among visual words are performed after dictionary construction. However, close object regions can h...
متن کاملFace image analysis with convolutional neural networks
In this work, we present the problem of automatic appearance-based facial analysis with machine learning techniques and describe common specific subproblems like face detection, facial feature detection and face recognition which are the crucial parts of many applications in the context of indexation, surveillance, access-control or human-computer interaction. To tackle this problem, we particu...
متن کاملCombining CNN and BLSTM to Extract Textual and Acoustic Features for Recognizing Stances in Mandarin Ideological Debate Competition
Recognizing stances in ideological debates is a relatively new and challenging problem in opinion mining. While previous work mainly focused on text modality, in this paper, we try to recognize stances from both text and acoustic modalities, where how to derive more representative textual and acoustic features still remains the research problem. Inspired by the promising performances of neural ...
متن کاملNeural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016